Updating Results

Edith Cowan University (ECU)

  • 19% international / 81% domestic

Bachelor of Engineering (Mechatronics) Honours

  • Bachelor (Honours)

Mechatronics engineering is a multidisciplinary program, where knowledge of mechanical and electrical/electronic engineering are combined towards the development of intelligent machines and advanced manufacturing and processing systems.

Key details

Degree Type
Bachelor (Honours)
Duration
4 years full-time, 8 years part-time
Course Code
Y44, 083183A
Domestic Fees
$7,850 per year / $31,400 total
International Fees
$38,950 per year / $155,800 total

About this course

Mechatronics engineering is a multidisciplinary program, where knowledge of mechanical and electrical/electronic engineering are combined towards the development of intelligent machines and advanced manufacturing and processing systems.

Whilst developing the strong analytical and problem-solving capabilities typical of any engineering program, this particular program is specifically tailored to Australia's resource-based and service industries. The course starts with a typical engineering science foundation in mathematics, mechanics, electrical engineering and computing, and then proceeds to cover major engineering topics, including digital electronics and microprocessor systems, advanced materials and manufacturing, and mechanical design.

Mechatronics engineering gives a broader engineering coverage compared with standard mechanical or electrical engineering programs with the themes of automation, instrumentation, digital electronics, manufacturing, mechanical design, fluid mechanics and control systems.

The program focuses on the development of knowledge and skills relevant to professional engineering practice and along with a sound theoretical base, includes strong elements of practical problem solving, team work and project development. As a result, as well as having multiple technical and transferable skill competencies, graduates will gain strong analytical skills, and have the ability to lead complex projects.

Areas of study within the course include engineering mechanics, computer-aided design and manufacturing, analogue and digital electronics, signal analysis, electromechanical systems, industrial control, and robotics.

The first year of this course includes a set of eight units that are common across all engineering honours courses. This allows students the opportunity to develop a better understanding of the various engineering disciplines on offer and the flexibility, if desired, to switch to another engineering discipline/course without penalty after the first year of study.

Australian Qualifications Framework (AQF) level

This course has been accredited by ECU as an AQF Level 8 Bachelor Honours Degree Award.

Entry requirements

Admission requirements you'll need to meet for this course.

  • The following course-specific admission requirements are mandatory and must be satisfied by all applicants. These requirements are in addition to or supersede the minimum requirements outlined within the Academic admission requirements band section below.

    All applicants are required to have Mathematics: Methods ATAR, with equivalents considered, and Physics ATAR or Engineering Studies ATAR or Chemistry ATAR or Mathematics: Specialist ATAR, with equivalents considered.
    It is desirable that all applicants have Physics ATAR or Engineering Studies ATAR, with equivalents considered, students without Physics ATAR or Engineering Studies ATAR may need to take a bridging unit in the first year of their studies.

    All applicants must meet the academic admission requirements for this course. The indicative or guaranteed ATAR is as published (where applicable) or academic admission requirements may be satisfied through completion of one of the following:

    • AQF Diploma or equivalent;
    • Undergraduate Certificate;
    • Successfully completed 0.5 EFTSL of study at bachelor level or higher at an Australian higher education provider (or equivalent);
    • Special Tertiary Admissions Test;*
    • University Preparation Course;*
    • Indigenous University Orientation Course; or*
    • Aboriginal University Readiness Assessment.*

    * Further information can be found on the Study course entry page.

    For international students, requirements include your secondary school results.

  • English competency requirements may be satisfied through completion of one of the following:

    • Year 12 English ATAR/English Literature ATAR grade C or better or equivalent;
    • Special Tertiary Admissions Test;*
    • IELTS Academic Overall band minimum score of 6.0 (no individual band less than 6.0);
    • Successfully completed 1.0 EFTSL of study at bachelor level or higher in the UK, Ireland, USA, NZ or Canada;
    • University Preparation Course;
    • Indigenous University Orientation Course;*
    • Aboriginal University Readiness Assessment;*
    • AQF Diploma, Advanced Diploma or Associate Degree;
    • Successfully completed 0.375 EFTSL of study at bachelor level or higher at an Australian higher education provider (or equivalent); or
    • Other tests, courses or programs defined on the English Proficiency Bands page.

    * Further information can be found on the Study course entry page.

Applications for this course are not accepted through ECU's Experience Based Entry Scheme.

Study locations

Joondalup

What you will learn

  1. Demonstrate advanced knowledge of the underpinning natural and physical sciences and in depth understanding of specialist bodies of knowledge within the mechatronics discipline.
  2. Think critically, and apply established engineering methods and research skills to complex mechatronics problem solving.
  3. Apply systematic engineering synthesis and design processes to conduct and manage engineering projects, with some intellectual independence.
  4. Demonstrate conceptual understanding of the mathematics, numerical analysis, statistics and computer and information sciences which underpin the mechatronics discipline and fluently apply engineering techniques, tools and resources.
  5. Demonstrate clear and coherent oral and written communication in professional and lay domains.
  6. Demonstrate a global outlook and knowledge of contextual factors impacting the engineering discipline, including respect for cultural diversity and indigenous cultural competence.
  7. Demonstrate effective team membership and team leadership to implement engineering projects according to relevant standards of ethical conduct, sustainable practice and professional accountability.
  8. Demonstrate responsibility for own learning, professional judgement and an understanding of the scope, principles, norms, accountabilities and bounds of contemporary engineering practice.
  1. Demonstrate advanced knowledge of the underpinning natural and physical sciences and in depth understanding of specialist bodies of knowledge within the mechatronics discipline.
  2. Think critically, and apply established engineering methods and research skills to complex mechatronics problem solving.
  3. Apply systematic engineering synthesis and design processes to conduct and manage engineering projects, with some intellectual independence.
  4. Demonstrate conceptual understanding of the mathematics, numerical analysis, statistics and computer and information sciences which underpin the mechatronics discipline and fluently apply engineering techniques, tools and resources.
  5. Demonstrate clear and coherent oral and written communication in professional and lay domains.
  6. Demonstrate a global outlook and knowledge of contextual factors impacting the engineering discipline, including respect for cultural diversity and indigenous cultural competence.
  7. Demonstrate effective team membership and team leadership to implement engineering projects according to relevant standards of ethical conduct, sustainable practice and professional accountability.
  8. Demonstrate responsibility for own learning, professional judgement and an understanding of the scope, principles, norms, accountabilities and bounds of contemporary engineering practice.

Career pathways

Mechatronics engineers have diverse employment opportunities in most sectors of industry, including product design and development, manufacturing, mining and resource, process control and automation, public utilities, road and transport, defence, aerospace, and consulting.

Possible future job titles

Mechatronics Engineer, Robotics Engineer, Automation Engineer

Similar courses to consider
  • Bachelor of Technology (Engineering)
    Applicants who do not meet the entrance requirements for this Engineering course should consider applying for a Bachelor of Technology course as a pathway. Bachelor of Technology students who successfully complete their first year of study can expect to gain entry into the Bachelor of Engineering courses with advanced standing for all non-bridging units completed.
  • Bachelor of Engineering Honours/Bachelor of Commerce
  • Bachelor of Technology (Motorsports)
    Applicants who do not meet the entrance requirements for this Engineering course should consider applying for a Bachelor of Technology course as a pathway. Bachelor of Technology students who successfully complete their first year of study can expect to gain entry into the Bachelor of Engineering courses with advanced standing for all non-bridging units completed.

Graduate outcomes

Graduate satisfaction and employment outcomes for Engineering courses at Edith Cowan University (ECU).
84%
Overall satisfaction
87.2%
Skill scale
67%
Teaching scale